Low dimensional simplex evolution: a new heuristic for global optimization

نویسندگان

  • Changtong Luo
  • Bo Yu
چکیده

This paper presents a new heuristic for global optimization named low dimensional simplex evolution (LDSE). It is a hybrid evolutionary algorithm. It generates new individuals following the Nelder-Mead algorithm and the individuals survive by the rule of natural selection. However, the simplices therein are real-time constructed and low dimensional. The simplex operators are applied selectively and conditionally. Every individual is updated in a framework of try-try-test. The proposed algorithm is very easy to use. Its efficiency has been studied with an extensive testbed of 50 test problems from the reference (J Glob Optim 31:635–672, 2005). Numerical results show that LDSE outperforms an improved version of differential evolution (DE) considerably with respect to the convergence speed and reliability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmented Downhill Simplex a Modified Heuristic Optimization Method

Augmented Downhill Simplex Method (ADSM) is introduced here, that is a heuristic combination of Downhill Simplex Method (DSM) with Random Search algorithm. In fact, DSM is an interpretable nonlinear local optimization method. However, it is a local exploitation algorithm; so, it can be trapped in a local minimum. In contrast, random search is a global exploration, but less efficient. Here, rand...

متن کامل

Triangle Evolution–A Hybrid Heuristic for Global Optimization

This paper presents a hybrid heuristic–triangle evolution (TE) for global optimization. It is a real coded evolutionary algorithm. As in differential evolution (DE), TE targets each individual in current population and attempts to replace it by a new better individual. However, the way of generating new individuals is different. TE generates new individuals in a NelderMead way, while the simpli...

متن کامل

Hybridizing Shuffled Frog Leaping and Shuffled Complex Evolution Algorithms Using Local Search Methods

In this research, a study was carried out to exploit the hybrid schemes combining two classical local search techniques i.e. Nelder–Mead simplex search method and bidirectional random optimization with two metaheuristic methods i.e. the shuffled frog leaping and the shuffled complex evolution, respectively. In this hybrid methodology, each subset of meta-heuristic algorithms is improved by a hy...

متن کامل

An Improved Imperialist Competitive Algorithm based on a new assimilation strategy

Meta-heuristic algorithms inspired by the natural processes are part of the optimization algorithms that they have been considered in recent years, such as genetic algorithm, particle swarm optimization, ant colony optimization, Firefly algorithm. Recently, a new kind of evolutionary algorithm has been proposed that it is inspired by the human sociopolitical evolution process. This new algorith...

متن کامل

Comparison of Modified Downhill Simplex and Differential Evolution with other Selected Optimization Methods Used for Discrete Event Simulation Models

The paper deals with testing and evaluation of selected heuristic optimization methods Random Search, Downhill Simplex, Hill Climbing, Tabu Search, Local Search, Simulated Annealing, Evolution Strategy and Differential Evolution. We modified basic methods in such a way that they are applicable for discrete event simulation optimization purposes. The paper is mainly focused on testing Downhill S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Global Optimization

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2012